纸论述改进没有元素的 Galerkin (IEFG ) 为三维的波浪繁殖的方法。改进移动最少平方(IMLS ) 近似被采用构造形状函数,它与一个重量函数把一个直角的函数系统用作基础函数。与常规移动相比最少平方(MLS ) 近似,在 IMLS 的代数学的方程系统近似不是性恶的,并且没有导出反的矩阵,能直接被解决。因为比在 MLS 近似在 IMLS 有更少系数,更少节点比在没有元素的 Galerkin 方法在 IEFG 方法被选择。因此, IEFG 方法有更高的计算速度。在 IEFG 方法, Galerkin 弱形式被采用获得一个 discretized 系统方程,并且惩罚方法被使用强加必要边界条件。为二点的边界价值问题的传统的差别方法为时间 discretization 被选择。当波浪方程和边界起始的条件取决于时间,可伸缩的参数,节点的数字和时间,步长度为集中学习被考虑。
The paper presents the improved element-free Galerkin (IEFG) method for three-dimensional wave propa- gation. The improved moving least-squares (IMLS) approx- imation is employed to construct the shape function, which uses an orthogonal function system with a weight function as the basis function. Compared with the conventional moving least-squares (MLS) approximation, the algebraic equation system in the IMLS approximation is not ill-conditioned, and can be solved directly without deriving the inverse matrix. Because there are fewer coefficients in the IMLS than in the MLS approximation, fewer nodes are selected in the IEFG method than in the element-free Galerkin method. Thus, the IEFG method has a higher computing speed. In the IEFG method, the Galerkin weak form is employed to obtain a dis- cretized system equation, and the penalty method is applied to impose the essential boundary condition. The traditional difference method for two-point boundary value problems is selected for the time discretization. As the wave equations and the boundary-initial conditions depend on time, the scal- ing parameter, number of nodes and the time step length are considered for the convergence study.