因为他们的高特定的表面区域和 single-crystal-like 隧道墙, Single-crystal-like TiO 2 mesoporous microspheres 在紫外光(紫外光) 下面与高 photocatalytic 活动被报导了。在这个工作, plasmonic 金牌 nanoparticles (Au NP ) 和 -NaYF4 :Yb 3+, 嗯 3+ upconversion nanoparticles (UCNP ) 是有通过一系列灵巧的途径的 single-crystal-like TiO 2 mesoporous microspheres 的 composited,瞄准拓宽太阳的光的反应区域从对可见、近的红外线的光紫外并且进一步提高 photocatalytic 活动。结构被修改 TiO 2 mesoporous microspheres 的毛孔尺寸以便抛锚讲道理地设计 plasmonic Au NP,和盖住的 -NaYF4 :Yb 3+, 嗯有 SiO 2 的 3+ 以便经由吸水的相互作用把 UCNP 嵌进 TiO 2 mesoporous microspheres。这个工作学习了 Au NP 和 UCNP 的归属到光催化并且与象在整体的体系结构的 mesoporous microspheres 将在模仿的太阳的光下面带给提高的宽带 photocatalytic 活动的 TiO 2 一样的 single-crystal- 发现了那联合 Au NP 和 UCNP 的某些数量。因而,包含 150mg UCNP 的合成 photocatalyts 处于反应率显示出重要改进,它比商业 P25 高是 36.02% 并且 85.09% 比在模仿的太阳的光下面的纯 TiO 2 mesoporous microspheres 高。
Single-crystal-like TiO2 mesoporous microspheres have been reported with high photocatalytic activity under ultraviolet light (UV light) because of their high specific surface areas and single-crystal-like channel walls. In this work, plasmonic gold nanoparticles (Au NPs) and fl-NaYF4: Yb3+, Er3+ upconversion nanoparticles (UCNPs) were composited with single-crystal-like TiO2 mesoporous microspheres through a series of facile approaches, aiming at broadening response region of solar light from UV to visible and near infrared light and enhancing the photocata- lyric activity further. The structure was rationally designed by modifying the pore size of TiO2 mesoporous micro- spheres so as to anchor plasmonic Au NPs, and covering β-NaYF4: Yb3+, Er3+ with SiO2 in order to embed UCNPs into TiO2 mesoporous microspheres via hydrophilic interaction. This work studied the attribution of Au NPs and UCNPs to photocatalysis and found out that combining Au NPs and certain amount of UCNPs with single-crystal- like TiO2 mesoporous microspheres in a monolithic architecture would bring enhanced broadband photocatalytic activity under simulated solar light. Consequently, the composite photocatalyts containing 150 mg UCNPs showed a significant enhancement in reaction rate, which was 36.02% higher than commercial P25 and 85.09% higher than pure TiO2 mesoporous microspheres under simulated solar light.