蹭行运动在生物被膜形成过程中对细菌适应表面环境以及后续生物被膜三维结构的形成起重要作用。因此,对蹭行运动的原位表征、量化是生物被膜研究中的重要科学问题之一。我们通过高通量数据采集、自动化图像处理、数据库建立以及图形化输出等技术手段,建立了一整套基于单细菌的统计分析方法。利用这一方法对蹭行运动中的行走、弹射过程进行了详细分析,发现弹射运动过程中存在以0.9S为周期的周期性弛豫。并定量比较了群体感知信号分子对蹭行运动的影响,发现加入信号分子后蹭行运动在高速区明显增强。该方法的建立为后续蹭行运动分子机制以及调节方式的研究奠定了基础。
Twitching motility is very important for Pseudomonas aeruginosa in the adaptation of surface environment and in the 3-D structure formation of mature biofilm. To quantitatively characterize twitching motility in situ, we developed a method by combining high-throughput data acquisition, automatic image processing and database establishment. This method is based on single cell analysis and big data visualization. A periodic relaxation of 0.9 second was resolved during slingshot motility analysis. Twitching motilities of bacteria under addition of two quorum sensing signaling molecules were studied, cells moved faster after signal addition. This method may help understand the molecular mechanism and regulatory circuits of twitching motility.