位置:成果数据库 > 期刊 > 期刊详情页
一种基于多特征融合的视频目标跟踪方法
  • ISSN号:1001-2400
  • 期刊名称:《西安电子科技大学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西安电子科技大学综合业务网理论及关键技术国家重点实验室,陕西西安710071
  • 相关基金:国家自然科学基金资助项目(60872141);中央高校基本科研业务费专项资金资助项目(K50510010007);陕西省自然科学基础研究计划资助项目(2009JQ8019)
中文摘要:

针对复杂场景下多特征跟踪算法适应性不强的问题,提出一种多特征有效融合和更新的目标跟踪方法。该方法在粒子滤波框架下采用加权融合的方式对目标进行多特征观测和相似性度量,通过分析粒子的空间集中度和权值分布建立一种有效的融合系数计算方法,使融合结果更加准确可靠;然后选取可信度高的特征检测遮挡,并动态调整目标模型的更新速度,以降低算法受目标变化和部分遮挡的影响。实验证明该方法对复杂的跟踪场景具有更强的鲁棒性,并适用于目标被遮挡时的跟踪。

英文摘要:

Object tracking using multiple features has poor performance under complex scenes and when occlusion occurs. Therefore, an algorithm for fusing multiple features adaptively in the particle filter tracking framework is proposed, The tracked object is represented by the fusion of all features under linear weighting, and a new method to estimate the fusion coefficient is also proposed according to the weight distribution of all particles as well as their spatial concentrations, thus improving the reliability of multi features fusion. Besides, a dynamic updating strategy is used to adjust the update speed of each feature template adaptively, thus alleviating the affection of object deformation. According to the confidence of each feature, an occlusion handling strategy is invoked to decrease the influence of partial occlusion. Analysis and experiment show that the proposed method is more robust under complex scenes, and is applicable in the presence of occlusions.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《西安电子科技大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:西安电子科技大学
  • 主编:廖桂生
  • 地址:西安市太白南路2号349信箱
  • 邮编:710073
  • 邮箱:xuebao@mail.xidian.edu.cn
  • 电话:029-88202853
  • 国际标准刊号:ISSN:1001-2400
  • 国内统一刊号:ISSN:61-1076/TN
  • 邮发代号:
  • 获奖情况:
  • 曾13次荣获省部级优秀期刊荣誉和优秀编辑质量奖,2006年荣获首届中国高校优秀科技期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12591