位置:成果数据库 > 期刊 > 期刊详情页
一种分类器级联的手写相似汉字识别方法
  • ISSN号:1001-2400
  • 期刊名称:《西安电子科技大学学报》
  • 时间:0
  • 分类:TP391.43[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]西安电子科技大学通信工程学院,陕西西安710071, [2]西安电子科技大学综合业务网理论及关键技术国家重点实验室,陕西西安710071
  • 相关基金:国家自然科学基金资助项目(60872141); 中央高校基本科研业务费专项资金资助项目(K50510010007); 华为高校创新研究计划资助项目(IRP-2012-03-06)
中文摘要:

针对手写相似汉字识别问题,提出一种新的基于分类器的方法来更全面地利用原始特征中的判别信息.新方法与现有的对相似汉字提取额外特征的方法不同,其在得到特征向量之后,首先利用修正的二次判别函数进行分类,然后用支持向量机对分类结果中的相似汉字的上述特征向量进行再一次的分类,得到最终的识别结果.利用分类混淆矩阵自动得到相似汉字集合,并提出了一种新型的存储结构用于快速查找支持向量机的训练字典.在ETL9B手写汉字数据库上的实验表明,所提出的方法可得到相对于提取额外特征方法更好的识别结果,以此证明了原始特征中存在对于相似字的判别信息,提出的基于分类器的方法可更好地利用这些判别信息.

英文摘要:

To solve the similar handwritten character recognition problem,a novel scheme is proposed to make better use of the feature's discriminative information.Different from the methods for extracting the extra feature for the similar characters,the Modified Quadratic Discriminant Function(MQDF)is first adopted to classify the feature,then the Support Vector Machine(SVM)is used to discriminate the similar characters without the extra feature.To collect the subset of similar characters,the confusion matrix is employed.A new structure for storing the dictionary of the SVM is also proposed for quickly searching.Experimental results on ETL9 Bshow the superior performance of the proposed scheme to the methods for extracting the extra feature,which proves that the feature contains discriminative information for the similar characters and that the proposed scheme can utilize this information very effectively.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《西安电子科技大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:西安电子科技大学
  • 主编:廖桂生
  • 地址:西安市太白南路2号349信箱
  • 邮编:710073
  • 邮箱:xuebao@mail.xidian.edu.cn
  • 电话:029-88202853
  • 国际标准刊号:ISSN:1001-2400
  • 国内统一刊号:ISSN:61-1076/TN
  • 邮发代号:
  • 获奖情况:
  • 曾13次荣获省部级优秀期刊荣誉和优秀编辑质量奖,2006年荣获首届中国高校优秀科技期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12591