大气压射频放电是人们比较关注的气体放电形式,在合适的放电条件下,其产生的低温非平衡等离子体中可以产生大量的活性粒子,如何优化与调控这些活性粒子的产生与分布是实际应用中,特别是与环境相关的应用中人们非常关心的问题。因此数值求解了描述大气压射频等离子体的流体模型,研究了放电频率、放电间隙及脉冲调制对大气压射频等离子体中活性粒子的影响。计算结果表明,在相同的功率下,过高的放电频率(〉20 MHz)会抑制活性粒子的产生,而较小的放电间隙(〈1 mm,即在微等离子体范围内)则有助于提高活性粒子的数密度;通过选取合适的调制频率与占空比,借助于脉冲调制的方式在大气压射频放电中可以有效的调控活性粒子的产生,并降低功率消耗。研究结果可对大气压射频放电中活性粒子的应用提供一定的理论指导。
Atmospheric radio-frequency (RF) discharge draws increasing attention in recent years.With certain settings, low-temperature non-equilibrium plasmas can generate plenty of reactive oxygen species (ROS). How to optimize and modulate the generation and distribution of ROS is essential for RF plasmas' industrial applications, especially their biomedical and environmental applications. Because of this, we established a one-dimensional fluid model of atmospheric RF discharge and used it to investigate the influences of driving frequency, electrode spacing and pulse modulation on the ROS in RF plasmasgenerated from He/O2 mixtures. The computational results show that, under a given discharge power condition, as the frequency increases, especially above 20 MHz, the generation of ROS is suppressed; a small electrode gap (〈1 mm, in the regime of microplasma)is helpful to increasing the ROS's number density under a constant power condition. By choosing appropriate modulation frequencies and duty cycles, the production of ROS can be effectively optimized with reduced power consumption.The results can be used as a theoretical reference for applications of ROS generated in atmospheric RF discharges.