钢管应用于多个重要工业领域,工况恶劣复杂,对其实施无损检测则尤为重要。涡流检测由于具有诸多优点,增添磁饱和器是检测钢管的常用方法,但目前检测时忽视了钢管磁特性的独特影响,认为在饱和磁化后钢管成为非铁磁性管道,机理认识不足会引起缺陷量化评价的失真。简述了钢管涡流检测的机理和方法,分析讨论了影响涡流检测信号的缺陷漏磁场和缺陷区域畸变的磁导率等磁特性因素。指出了钢管内壁缺陷检出造成现有评价手段的混乱,并总结了当前研究的发展趋势,为钢管涡流检测的未来研究方向提供借鉴。
It is particularly important to conduct the non-destructive testing on steel pipes used in many important industries under severe and complicated working conditions. Eddy current testing method with many advantages is a common method for detection of steel pipe after adding saturated magnetic device, but at present, the unique effect of pipe magnetic properties is neglected. It is incomplete to consider that steel pipes will become non ferromagnetic pipeline after magnetic saturation, the lack of understanding the mechanism will cause the distortion in quantitative evaluation on defects. The mechanism and method of eddy current testing on steel pipes were presented. Some magnetic proper- ties parameters, such as magnetic flux leakage field and distortional magnetic permittivity near the de- fect area which can influence the eddy current testing signal were analyzed. It indicates the inner de- fect detection of steel pipe will cause a chaos of the existing evaluation methods. The current develo- ping tendency of eddy current testing on steel pipes were summarized, which provides a reference for their future development.