利用2008—2010年棉花密度试验,分析棉株器官生物量-形态间异速生长关系,改进COTGROW模型中的发育和形态发生模块,构建了棉花地上部器官形态建成模型;基于COTGROW模型模拟数据,与GroIMP可视化开发平台的数据链接,实现了棉花生长过程的可视化;利用建立的功能-结构模型对不同密度棉花冠层的光截获量进行了模拟。利用2010年的试验数据检验模型,结果表明,棉花株高、主茎节数、果枝数、各果枝果节数、节间长度、节间直径、叶片长度、叶片宽度、叶柄长度、叶柄直径、棉铃长度以及铃直径测定值与模拟值间的均方根误差分别为3.85、0.64、0.52、0.66、1.00、0.15、1.58、2.39、2.54、0.05、0.13和0.10cm,模型效果较好;构建的棉花地上部功能-结构模型可以较好地模拟棉花的形态特征,并较逼真地显示棉花器官、植株的三维动态生长过程,可以反映出不同环境条件、不同密度处理下棉花植株的三维形态,在可视化的基础上模拟棉花冠层空间的光截获量。为虚拟棉作研究提供了技术基础。
Three-year experiments with different planting densities were conducted in Anyang, Henan Provence of China. The development and morphogenesis module of COTGROW model was improved based on the allometry relationship between biomass and morphology, which was used to construct cotton model for above-ground organs. The morphology model included several sub-models, such as stem, leaf, petiole, boll, and so on. A visual cotton growth process was displayed through linking the COTGROW and the GroIMP models, thus, the cotton canopy light interception was simulated. The results showed that the dynamic change of each organ size could be characterized by relationship between biomass and morphology based on cotton above-ground organs model of COTGROW. The model was validated by independent experiments in 2010. The root mean squared error (RMSE) between the measured and simulated values for morphological parameters were 3.85, 0.64, 0.52, 0.66, 1.00, 0.15, 1.58, 2.39, 2.54, 0.05, 0.13, and 0.10 cm for plant height, nodes on main stem, the number of fruiting branches, nodes on different fruiting branches, internode length, internode diameter, leaf length, leaf width, petiole length, petiole diameter, boll length and boll diameter, respectively. Various 3D morphology of cotton plant in different environmental conditions and different plant densities was shown, and light interception of canopy also well simulated. Functional and structural model for above-ground organs in cotton could be used to simulate cotton morphological characteristics and display the real growth process of organs and plant, which provides a technical basis for virtual farming.