该文分析了扩展的一般线性方法关于Banach空间中一类时滞积分微分方程数值解的可解性,给出了其方法的解的存在唯一性判据,并探讨了其Newton迭代解的性态.所获结果可应用于扩展的Runge-Kutta方法和扩展的线性多步方法等.
This paper analyzes the unique solvability of the extended general linear methods for a class of delay-integro-differential equations on Banach spaces.The criteria for existence and uniqueness of the methods' solutions are derived.Moreover,the properties of Newton iterative solutions are concerned.The obtained results are applicable to the extended Runge-Kutta methods,the extended linear multistep methods and other some methods.