本文考虑了一类延迟积分-微分方程的Hopf分岔分析.利用敏感性方程,确定了一个合适的Hopf参数.基于Hopf分岔理论得到,当系统存在Hopf分岔时系统参数必须满量的条件.为了得到Hopf参数的精确值,进一步讨论了延迟积分一微分方程的离散形式,利用Newton迭代法,得到了参数的逼近值.最后,数值仿真说明了我们的理论的有效性.
This paper deals with Hopf bifurcation analysis of a kind of delay integro-differential equations. Applying the sensitivity equation,we determine the suitable Hopf bifurcation parameter first. Based on the theory of Hopf bifurcation,we obtain the relation of the pa- rameters when the system has a Hopf bifurcation. In order to get the exact value of the Hopf bifurcation point,we discuss the discrete version of the integro-differential equation,and use the approximation parameter as the initial value of the Newton iteration method. At last,nu- merical simulations show that our theory are reasonable.