位置:成果数据库 > 期刊 > 期刊详情页
基于最小一乘准则的上证指数突变点研究
  • ISSN号:1003-207X
  • 期刊名称:《中国管理科学》
  • 时间:0
  • 分类:F064.1[经济管理—政治经济学] F830.91[经济管理—金融学]
  • 作者机构:[1]复旦大学管理学院,上海200433, [2]上海大学经济学院,上海200444, [3]上海社会科学院数量经济研究中心,上海200025
  • 相关基金:教育部人文社会科学研究青年基金项目(12YJC790293); 国家自然科学基金青年项目(71301099,71001061); 上海市“浦江人才”计划项目(10PJC050); 上海市教委科研创新重点项目(13ZS063); 上海市选拔培养优秀青年教师科研专项基金
中文摘要:

很多研究表明,上证指数序列既有结构突变的特征,也有厚尾的特征。但大部分现有的研究都没有考虑其厚尾特征对变点估计的影响。本文基于最小一乘准则提出了一个估计厚尾数据中变点的方法。模拟研究表明,当数据具有厚尾特征时,基于最小一乘准则的变点估计比基于最小二乘准则的估计有效。对上证指数的实证结果表明,基于最小一乘准则估计出的变点能更好地描述中国股票市场的结构突变特征。

英文摘要:

The series of Shanghai Composite Index not only has structural changes,but also is heavytailed.For example,the kurtosis of log returns of its daily closing prices from 2006/1/4 to 2011/12/31 is5.61.It is much greater than that of the normal distribution,so the log returns data are heavy-tailed obviously.Moreover,the stock market in this period experienced the switchover from a big bull market to a big bear market,which will lead to many structural changes.However,the most existing studies did not consider the influence of the heavy-tailed feature on the estimation of change points.To solve this problem,an approach was proposed in this paper to estimate change points in heavy-tailed data based on the least absolute deviation criterion,which is more robust than least squares criterion and can fit data with heavy-tailed feature well.The results obtained from simulation studies showed that the estimates of the number and locations of change points based on the least absolute deviation criterion are more accurate than those based on least square criterion when the simulated data have heavy-tailed feature.This shows that the former is more efficient than the latter.The log returns of daily closing prices of Shanghai Composite Index from 2006/1/4 to 2011/12/31 were collected for empirical study.The empirical results indicated that the change points estimated by least absolute deviation criterion are different from those estimated by least squares criterion,and the former can describe the structural changes of Chinese stock market well.Hence,the results obtained from the simulated studies and empirical analysis show that it is necessary to consider the heavy-tailed feature in estimating structural changes when the data have heavy-tailed feature.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国管理科学》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国优选法统筹法与经济数学研究会 中科院科技政策与管理科学研究所
  • 主编:蔡晨
  • 地址:北京海淀区中关村北一条15号(北京8712信箱)
  • 邮编:100190
  • 邮箱:zgglkx@casipm.ac.cn
  • 电话:010-62542629
  • 国际标准刊号:ISSN:1003-207X
  • 国内统一刊号:ISSN:11-2835/G3
  • 邮发代号:82-50
  • 获奖情况:
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国人文社科核心期刊,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:25352