我们用 Feshbach 回声和外部潜力与悦耳的相互作用在 Bose 爱因斯坦冷凝物的动力学考察我们的最近的理论进展。为 Gross-Pitaevskii 方程的一套分析、数字的方法被开发学习 Bose 爱因斯坦冷凝物的非线性的动力学。经分解,我们在场为有悦耳的相互作用和外部潜力的 Gross-Pitaevskii 方程的 integrable 条件,并且在一个和二维的盒子获得一个部件和二部件的 Bose 爱因斯坦冷凝物的准确分析解决方案的一个家庭。然后,我们使用这些模型调查在二 solitons 之间的 solitons 和碰撞的动力学。数字地,分析准确答案的稳定性被检查并且现象例如戒指黑暗 soliton 和 vector-soliton 的动力学和调整,经由 Feshbach 回声,使量子化的 soliton 和旋涡在的 soliton 变换伪二维也被调查。两个都,准确、数字的答案证明 Bose 爱因斯坦冷凝物的动力学能被 Feshbach 回声和外部潜力有效地控制,它在 Bose 爱因斯坦冷凝物为原子事波浪和非线性的刺激的操作提供一个好机会。
We review our recent theoretical advances in the dynamics of Bose Einstein condensates with tunable interactions using Feshbach resonance and external potential. A set of analytic and numerical methods for Gross Pitaevskii equations are developed to study the nonlinear dynamics of BoseEinstein condensates. Analytically, we present the integrable conditions for the Gross Pitaevskii equations with tunable interactions and external potential, and obtain a family of exact analytical solutions for one- and two-component Bose Einstein condensates in one and two-dimensional cases. Then we apply these models to investigate the dynamics of solitons and collisions between two solitons. Numerically, the stability of the analytic exact solutions are checked and the phenomena, such as the dynamics and modulation of the ring dark soliton and vector-soliton, soliton conversion via Feshbach resonance, quantized soliton and vortex in quasi-two-dimensional are also investigated. Both the exact and numerical solutions show that the dynamics of Bose Einstein condensates can be effectively controlled by the Feshbach resonance and external potential, which offer a good opportunity for manipulation of atomic matter waves and nonlinear excitations in Bose Einstein condensates.