We investigate the nonlinear dynamics of a system composed of a cigar-shaped Bose-Einstein condensate and an optical cavity with the two sides coupled dispersively.By adopting discrete-mode approximation for the condensate,taking atom loss as a necessary part of the model to analyze the evolution of the system,while using trial and error method to find out steady states of the system as a reference,numerical simulation demonstrates that with a constant pump,atom loss will trigger a quantum optical bi-stability switch,which predicts a new interesting phenomenon for experiments to verify.
We investigate the nonlinear dynamics of a system composed of a cigar-shaped Bose-Einstein condensate and an optical cavity with the two sides coupled dispersively.By adopting discrete-mode approximation for the condensate,taking atom loss as a necessary part of the model to analyze the evolution of the system,while using trial and error method to find out steady states of the system as a reference,numerical simulation demonstrates that with a constant pump,atom loss will trigger a quantum optical bi-stability switch,which predicts a new interesting phenomenon for experiments to verify.