位置:成果数据库 > 期刊 > 期刊详情页
基于高频子带特征的咳嗽检测方法
  • ISSN号:0469-5097
  • 期刊名称:《南京大学学报:自然科学版》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]同济大学控制科学与工程系,上海201804, [2]同济大学附属同济医院呼吸内科,上海200065
  • 相关基金:国家自然科学基金(61273305,81274007); 中央高校基本科研业务费专项资金
中文摘要:

咳嗽是呼吸道疾病中一种常见的症状,基于模式识别算法可以对语音信号中咳嗽对象的频度和强度进行客观化分析,进而帮助临床咳嗽的诊断及病程跟踪.在临床录制的连续语音信号中检测出咳嗽对象是咳嗽诊断及分析的基础.本文将咳嗽检测视为模式识别中的二分类问题,借助于分类器将咳嗽对象从背景信号中分离.在深入研究咳嗽频谱分布的基础上,提出一种新的基于高频子带的特征提取方法(High-frequency subband features method),在提取咳嗽信号特征之前,使用高频滤波器获取高频部分信号.在合成实验数据的过程中使用了不同的噪声类型和信噪比来组成不同的实验环境,并且在每种实验环境下对几种特征提取方法进行了评价与分析.实验结果表明,相比于常见的语音信号特征,结合基于高频子带特征的咳嗽检测方法在检测正确率等性能指标上有显著地提升.

英文摘要:

Cough is a very common symptom in respiratory diseases.Objective analysis on the frequency and intensity of cough by pattern recognition algorithm can provide more valuable clinical information for patients with chronic cough and help them with cough tracking and diagnosis.Cough detection is the basis of the diagnosis and analysis of cough in clinical continuous recordings.In this article,we consider cough detection problem as a binary classification ones and make use of classifier to segregate cough from background noise for the purpose of cough detection.We propose a novel high-frequency subband features method on the basis of in-depth study of the spectral distribution of cough.It is found that the energy of cough signal is distributed widely and concentrated in the high frequency region,which is very different from spectral patterns of speech signals.So in experiments,we firstly extract subband features of which frequency region varies from low frequency to high frequency using filter banks,and then find the performance of high frequency-subband features which is superior to that of low frequency-subband.Finally,the high-fre-quency subband method uses high-frequency filter to get corresponding high frequency signal before extracting the features of cough.The method synthesizes the experimental data under the condition of different noisy type and SNR(signal to noise ratio),then compares and analyses the performance of different feature extraction methods under specific noisy conditions.Experimental results demonstrate that compared with traditional audio feature extraction method,the method based on high-frequency subband features achieves substantial performance improvement in recognition.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《南京大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:南京大学
  • 主编:龚昌德
  • 地址:南京汉口路22号南京大学(自然科学版)编辑部
  • 邮编:210093
  • 邮箱:xbnse@netra.nju.edu.cn
  • 电话:025-83592704
  • 国际标准刊号:ISSN:0469-5097
  • 国内统一刊号:ISSN:32-1169/N
  • 邮发代号:28-25
  • 获奖情况:
  • 中国自然科学核心期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:9316