针对无人艇运动规划问题,通过Dubins路径的理论分析,提出一种利用纯粹几何方法的Dubins路径计算方法。该方法中没有出现解方程组的运算,而是首先根据无人艇运动状态计算转向圆,然后利用几何方法计算转向圆间的公切线,最后通过公切线连接得到Dubins路径。通过5组仿真实验验证了所提方法的有效性。前4组仿真实验分别设计了计算Dubins路径过程中可能出现的各种情形,以验证算法适用于多种情况的Dubins路径计算。最后一组仿真实验用于无人艇的路径规划及运动状态调整,仿真结果表明,基于Dubins路径的无人艇运动规划算法是可行的。
Aiming at the problem of motion planning for unmanned surface vehicle, a new method of calculating Dubins path by using pure geometric method was proposed by the theoretical analysis of Dubins path. The operation of solving equations was not used by the proposed method. Firstly, the steering circle was calculated according to the motion state of the unmanned surface vehicle. Then, the geometric method was used to compute the common tangent of the steering circles. Finally, the Dubins path was obtained by the common tangent connection. The effectiveness of the proposed method was verified through five groups of simulation experiments. All kinds of situations in the process of calculating the Dubins path were designed in the first four simulation experiments, the proposed algorithm was verified to be applicable to a variety of Dubins path calculation. The last experiment of simulations was used for path planning and motion state adjustment of unmanned surface vehicle. The simulation results show that the motion planning algorithm based on Dubins path is feasible.