位置:成果数据库 > 期刊 > 期刊详情页
信息不完备情况下多因素工序质量诊断方法
  • ISSN号:0367-6234
  • 期刊名称:《哈尔滨工业大学学报》
  • 时间:0
  • 分类:TP202[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]浙江大学机械工程学院,杭州310027, [2]江苏科技大学经济与管理学院,江苏镇江212003
  • 相关基金:国家自然科学基金(71371088)
中文摘要:

为解决信息不完备情况下的多因素工序质量诊断问题,在工艺机理分析的基础上,提出基于贝叶斯网络模型构建与推理的问题溯源方法。在贝叶斯网络结构学习过程中,利用基于评分/搜索的思想对基于工艺的预先假设结构,通过互信息参量排序降低学习复杂度。针对生产过程中随机因素对诊断准确性的影响问题,结合Leaky Noisy-OR模型引入随机参量节点,对数据需求和推理进行降解优化。以沟道磨削表面形貌质量问题的诊断为例,给出模型构建与推理程序,并验证了所构建模型及优化方法的可行性和有效性。

英文摘要:

Aiming at the problem of multi-cause process quality diagnosis under the circumstance of information losing, a method based on construction and inference of Bayesian network model is proposed. In the learning process of Bayesian network structure, the thought of score/search is adopted for the assumption structure so as to reduce the learning complexity through the mutual information parameters sorting. In view of the influence of random factors on the diagnostic accuracy, the Leaky Noisy-OR model is adopted, which simultaneously degrades the requirement quantities of data and reasoning. In the end, a problem diagnosis for channel grinding is taken as an example to verify the feasibility and effectiveness of the proposed model and optimization method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《哈尔滨工业大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国工业和信息化部
  • 主办单位:哈尔滨工业大学
  • 主编:冷劲松
  • 地址:哈尔滨市南岗区西大直街92号
  • 邮编:150001
  • 邮箱:
  • 电话:0451-86403427 86414135
  • 国际标准刊号:ISSN:0367-6234
  • 国内统一刊号:ISSN:23-1235/T
  • 邮发代号:14-67
  • 获奖情况:
  • 2000年获黑龙省科技期刊评比一等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27329