位置:成果数据库 > 期刊 > 期刊详情页
基于非参数技术的贝叶斯人脸识别算法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国科学院计算技术研究所,北京100080, [2]中国科学院研究生院,北京100049, [3]哈尔滨工业大学计算机科学与技术学院,黑龙江哈尔滨150001
  • 相关基金:国家自然科学基金重点资助项目(60332010);中国科学院“百人”计划资助项目
中文摘要:

考虑到类内差与类间差的分布实际并不是严格的高斯分布,在概率密度估计方面提出改进的方案。采用非参数技术而不是高斯模型估计后验概率,将其应用于传统的贝叶斯分类器。在FERET数据库的FB及FC子集上的实验结果表明,使用非参数技术的贝叶斯分类器优于或相当于使用高斯模型的分类器,且具有训练简单的优点。

英文摘要:

This paper proposed an approach which used nonparametric method to estimate the posterior probability instead of Gaussian model. The experiments on FERET FB and FC testing set show the proposed method is better than or equal to the Bayesian classifier using Gaussian model, and the proposed method is easy to be trained

同期刊论文项目
期刊论文 86 会议论文 130 著作 4
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049