位置:成果数据库 > 期刊 > 期刊详情页
基于形状无关纹理和Boosting学习的人口统计学分类
  • ISSN号:1009-5896
  • 期刊名称:《电子与信息学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]清华大学计算机系,北京100084
  • 相关基金:国家自然科学基金(60332010,60673107)资助课题
中文摘要:

基于形状无关纹理和boosting学习,该文提出了对性别和年龄分类的方法,其中年龄被划分为儿童、青年、中年和老年4类。检测到人脸后,利用人脸配准的结果规范化人脸图像获得形状无关纹理。在此基础上提取Haar型特征、LBP直方图和Gabor Jet 3种特征,通过boosting学习分别训练分类器。实验表明,LBP直方图特征能够鲁棒地区分儿童和老人,Haar型特征用作区分青年和中年人则更为有效,而Gabor Jet特征更适于性别分类。

英文摘要:

In this paper, a gender and age classification method, in which age is classified into four classes: child, youth, midlife and agedness, based on shape free texture and boosting learning is introduced. After a face is detected, face alignment extracts 88 facial landmarks by which the face image is normalized to a shape free texture. Further more, three kinds of local feature, Haar like feature, LBP histogram and Gabor jet are extracted from the shape free texture; and boosting learning method is used for training classifiers. The experimental results show that LBP histogram can be used for robust recognition of children and old people, Haar like feature is more efficient for discriminating young and middle aged people, and Gabor Jet fits for gender classification best.

同期刊论文项目
期刊论文 86 会议论文 130 著作 4
同项目期刊论文
期刊信息
  • 《电子与信息学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院电子学研究所 国家自然科学基金委员会信息科学部
  • 主编:朱敏慧
  • 地址:北京市北四环西路19号
  • 邮编:100190
  • 邮箱:jeit@mail.ie.ac.cn
  • 电话:010-58887066
  • 国际标准刊号:ISSN:1009-5896
  • 国内统一刊号:ISSN:11-4494/TN
  • 邮发代号:2-179
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24739