载体材料的选择对固定化酶的性能有着至关重要的影响。纳米复合材料不仅具有纳米尺寸的特性,而且可以克服单一材料的不足,在固定化酶领域引起了广泛关注。本文就目前在固定化酶领域使用的纳米复合载体分类进行了系统的阐述,重点介绍了目前在固定化酶研究领域运用较为广泛的硅基纳米复合材料、碳基纳米复合材料和纳米纤维复合材料等材料的制备方法及不同材料对酶学性能的影响,并对这些纳米复合材料固定化酶发展前景进行了展望。
The choice of carrier material has a crucial influence on the performance of the immobilized enzyme.Nanocomposites, which not only have the properties of nanoscale, but also overcome the shortcoming of a singlematerial, have attracted tremendous attention in the field of immobilized enzyme. In this paper, classifications ofnanocomposite carriers which are currently used in the field of immobilized enzyme are systematically elaborated;the preparation and the significantly enhanced enzymology properties of enzymes immobilized on Si-basednanoeomposites, C-based nanocomposites and nanofibers composites are introduced. The outlook of enzymesimmobilized on these nanocomposites is also prospected.