在Hurst指数H∈(1/2,1)条件下,研究了基于分数布朗运动的随机微分方程:du=(Au+uux)df+g(f)dB(f)的温和解的局部及整体存在性和唯一性.
In this paper we investigate the local and global existence and uniqueness of mild solutions to stochastic differential equations perturbed by a fractional Brownian motion Bff (t): du = (Au + UUx)dt + g(t) dB (t) with Hurst parameter H (1 / 2,1).