在非利普希茨条件和线性增长条件下,研究了中立型随机泛函微分方程解的存在唯一性,其初始值定义在抽象空间B((-∞,0]; Rd)内.该方程的解是通过皮卡逐步逼近的方法建立的.
Under condition of both non-Lipschitz and linear growth,the existence and uniqueness of solutions to neutral stochastic functional differential equations with infinite delay is investigated,in which the initial data belongs to the phase space B((-∞,0]; Rd).The solution is derived using the method of Picard successive approximation.