位置:成果数据库 > 期刊 > 期刊详情页
一种基于Bagging算法的高斯过程集成建模方法
  • ISSN号:1001-0505
  • 期刊名称:《东南大学学报:自然科学版》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]江南大学教育部轻工过程先进控制重点实验室,无锡214122
  • 相关基金:国家自然科学基金资助项目(60674092)、江苏省高技术研究资助项目(BG2006010).
中文摘要:

针对单一高斯过程在化工过程软测量建模中存在估计精度不高的问题,利用Bagging和高斯过程回归算法,提出一种基于Bagging算法的集成高斯过程软测量建模方法.该算法使用Bagging技术从训练样本集中选取若干子训练样本集,利用该若干子集形成多个高斯过程模型,并通过加权组合方式进行集成,得到最终的模型输出.将该方法应用到某双酚A生产装置缩合反应釜出口24BPA含量的软测量建模中,仿真结果表明相比于单一高斯过程模型,该集成算法具有更高的精度和泛化能力.

英文摘要:

In order to solve the problem of low estimation accuracy when using a single Gaussian process in the chemical process modeling, an ensemble model for soft-sensor is proposed based on Bagging and Gaussian process algorithms. The algorithm selects a number of sub-training sets from the whole training sample using Bagging technique, and then train the Gaussian process sub-models using the sub-training sets respectively. The output of the model is achieved by the integration with weighted outputs of the sub-models. Finally, the algorithm is applied to a soft sensor model of 24BPA in a bisphenol-A reactor. The simulation results show that the integration algorithm has higher accuracy and generalization ability comparing to a single Gaussian process model.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《东南大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:教育部
  • 主办单位:东南大学
  • 主编:毛善锋
  • 地址:南京四牌楼2号
  • 邮编:210096
  • 邮箱:xuebao@seu.edu.cn
  • 电话:025-83794323
  • 国际标准刊号:ISSN:1001-0505
  • 国内统一刊号:ISSN:32-1178/N
  • 邮发代号:28-15
  • 获奖情况:
  • 先后荣获第三届国家期刊奖百种重点期刊奖,2006-2...,2013年荣获首届江苏省新闻出版政府奖"报刊奖"
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23651