位置:成果数据库 > 期刊 > 期刊详情页
融合离群点判别的稳态检测方法及其应用
  • 期刊名称:华东理工大学学报(自然科学版)
  • 时间:0
  • 页码:144-148
  • 语言:中文
  • 分类:TP274[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]华东理工大学自动化研究所,上海200237
  • 相关基金:国家自然科学基金(20506003,20776042);国家863项目(2007AA04Z164,2007AA04Z171)
  • 相关项目:基于模式判别自协调模型的石油化工过程在线优化研究
作者: 颜学峰|李昕|
中文摘要:

针对可能含有离群点的过程数据,提出一种融合离群点判别的稳态检测(Steady StateIdentification,SSID)方法,即基于新型3δ法则离群点判别与自适应多项式滤波(Adaptive Poly-nomial Filtering,APF)稳态检测相结合的方法。该方法首先根据历史稳态数据自适应地确定滤波窗口的长度;然后针对过程数据离群点的特点,采用提出的新型3δ法则滤除并替换窗口数据中的离群点;通过对消除离群点的窗口数据进行多项式滤波,得到反映该窗口内数据变化特征的曲线,并根据曲线的特征判断过程是否处于稳态。仿真研究与实际应用表明:融合离群点判别的稳态检测方法克服传统稳态检测方法中离群点对稳态检测结果的影响,检测结果明显优于传统的APF方法。

英文摘要:

In this paper, a steady state identification method of containing outliers detection, i. e. , combining polynomial filtering steady state identification with the new 38 formula, is proposed for the process data containing outliers. In the proposed method, the length of filtering window is adaptively searched by means of the history data. And then, the outliers in the process data are filtered and replaced by using 38 formula. Finally, by making polynomial filtering to the present data in the window, the curve that shows the characteristic of the data is obtained. Moreover, the stability of the process is decided according to the characteristic of curve. Both simulation experiment and real application show that the proposed method performs better than traditional methods, e. g. , APF method.

同期刊论文项目
期刊论文 52 会议论文 3 获奖 6
同项目期刊论文