运用BP神经网络方法对复杂系统建模的过程中,经常遇到指标多、历史数据不足而降低网络泛化能力的情况。为了提高神经网络的泛化能力,本文从简化网络规模的角度出发,运用灰色关联分析法和主成分分析法对原始数据集做降维预处理,达到减少神经网络输入节点个数的目的。将由此建立的预测模型应用于我国粮食产量的预测,与一般的BP神经网络模型和基于主成分的BP神经网络模型相比,该预测模型明显简化了网络结构,提高了预测效率,同时较大地提高了预测精度。