设x为一个集合,级为x上的金变换半群.设E是x上的一个等价关系,定义 TE(x)={f∈Jx:A(x,y)∈E,f(x),f(y)∈E}则TE(x)是由等价关系E所确定的Jx的子半群.本文中,所考虑的集合X是一个有限全序集,同时E是非平凡的且所有的E-类都是凸集.显然OE(X)={f∈TE(x):Ax,y∈X,x≤y蕴涵f(x)≤f(y))是珏(x)的一个子半群.我们赋予OE(x)自然偏序并讨论何时OE(x)中的两个元素是关于这个偏序是相关的,然后确定OE(x)中那些关于≤是相容的元素.此外,还描述了极大(极小)元和覆盖元.
Let X be a set and Jx the full transformation semigroup on X. Let E be an equivalence on X and define TE(x)={f∈Jx:A(x,y)∈E,f(x),f(y)∈E} Then TE(X) is a subsemigroup of JX determined by the equivalence E. In this paper, the set X under consideration is a totally ordered finite set, while the equivalence E is non-trivial and all E-classes are convex. It is clear that OE(X)={f∈TE(x):Ax,y∈X,x≤y implics f(x)≤f(y)) is a subsemigroup of TE(X). We endow OE(X) with the so-called natural order ≤ and discuss when two elements in rYE(X) are related under this order, then determine those elements of OE(X) which are compatible with ≤. Also, the maximal (minimal) elements and the covering elements are described.