设X是一个集合,|X|〉3,TX为集合X上的全变换半群.设E为X上的一个等价关系,TE(X)={f∈TX:(x,y)∈E(f(x),f(y))∈E}为由等价关系E决定的TX的一个子半群.记T2(X)={f∈TE(X):|f(X)|≤2}∪{id},这里id表示X上的恒等映射,则T2(X)是TE(X)的一个子半群.另外还描述了半群T2(X)上的几个同余.
Let X be a set with |X|3,TX the full transformation semigroup on X.Let E be an equivalence relation on X and TE(X)={f∈TX:(x,y)∈E(f(x),f(y))∈E} the subsemigroup of TX determined by E.Denote T2(X)={f∈TE(X):|f(X)|≤2}∪{id},where id denotes the identity map on X.Then T2(X) is a subsemigroup of TE(X).Among other things,some congruences on the semigroup T2(X) are described.