本文研究了QK空间上紧的复合算子CФ的两个性质.论文给出了如果在D上的符号函数Ф的上确界小于1,则CФ在QK空间上是紧的.还限定了在Ф为某些条件下,CФ在QK空间与Bloch空间上的紧性是等价的.
In this paper, we give two properties of compact composition operators CФ on QK spaces. We show that if the supremum of the symbol function Ф on D is less than one, then CФ is compact on QK spaces. We also give a sufficient condition of Ф to show that the compactness of CФ on QK spaces is equivalent to the compactness of CФ on the Bloch space.