本文主要讨论了(L,M)-fuzzy凸空间的诱导理论。首先,利用三种Lowen算子ω、ι、[]得到了三种凸空间,并讨论了它们的基本性质。其次,引入了弱诱导的(L,M)-fuzzy凸空间,满层的(L,M)-fuzzy凸空间,以及诱导的(L,M)-fuzzy凸空间,并讨论了这三种空间的关系。最后,讨论了(L,M)-fuzzy凸商空间的诱导性质,并给出了(L,M)-fuzzy保凸映射和(L,M)-fuzzy凸凸映射的刻画。
The aim of this paper is to discuss the induced theory of (L,M)-fuzzy convex spaces. Firstly, by using three Lowen operators, namely, ω,τ and [- ], we obtain three convex spaces and discuss there basic properties. Secondly, we introduce the notions of induced (L, M)-fuzzy convex spaces, weakly induced (L,M)-fuzzy convex spaces and stratified (L,M)-fuzzy convex spaces, and further discuss their relations. Finally, we discuss induced properties of (L,M)-fuzzy convex quotient spaces and obtain some characterizations of (L, M)-fuzzy convex preserving mappings and (L, M)-fuzzy convex-to-convex mappings.