位置:成果数据库 > 期刊 > 期刊详情页
融合支持向量机与多目标进化算法的质量管理研究
  • ISSN号:2095-3844
  • 期刊名称:《武汉理工大学学报:交通科学与工程版》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]华中科技大学管理学院,武汉430074, [2]华中科技大学土木工程学院,武汉430074
  • 相关基金:国家自然科学基金项目资助(批准号:70471043)
中文摘要:

提出一套支持向量机和多目标进化算法的融合建模技术(SVM-EMO)以及计算框架,并采用差分进化算法(DE)选择支持向量机参数,并将SVM-EMO应用于一个钢铁企业产品质量管理实例,与人工神经网络的建模结果相比,所提框架结果拟合误差更小,精度更高,能够更好地解决质量管理研究中的多目标非线性优化问题.最后根据模型求解结果,给出了相应的生产建议.

英文摘要:

This paper proposes a framework based on support vector machine and multi-objective evolutionary algorithm to solve the multi-objective nonlinear problem. Besides, weuse DE algorithm to select parameters of support vector machine., The comparative results between SVM-EMO and artificial neural network show that the framework could solve multi-objective nonlinear problem efficiently. We illustrate these benefits using data from a steel plant to apply the framework for the quality management.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《武汉理工大学学报:交通科学与工程版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:武汉理工大学
  • 主编:骆奇峰
  • 地址:武汉市武昌区和平大道1178号89信箱
  • 邮编:430063
  • 邮箱:jwuttse@whut.edu.cn
  • 电话:027-86538436
  • 国际标准刊号:ISSN:2095-3844
  • 国内统一刊号:ISSN:42-1382/U
  • 邮发代号:38-148
  • 获奖情况:
  • 1997年全国优秀科技期刊,1995年全国自然科学优秀学报,1999年全国高校优秀学报及教育部优秀科技期刊,2010年中国高校优秀科技期刊,2010年中国科技论文在线优秀期刊二等奖,2008年RCCSE中国权威学术期刊,湖北省优秀期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国剑桥科学文摘,中国中国科技核心期刊
  • 被引量:13741