1-己烯和1-辛烯是制备高性能聚烯烃产品的重要共聚单体,近年来,PNP型铬系乙烯选择性三聚/四聚催化体系成为本领域研究热点。针对实验研究报道的系列氮上取代PNP型铬系催化剂,采用二维定量构效关系(QSPR)方法结合密度泛函理论(DFT)建立了该催化体系1-己烯、1-辛烯选择性的线性回归模型。研究中同时采用了启发式方法和最佳多元线性回归方法,考察了自定义描述符和铬金属活性中心价态(包括一价和二价)对线性回归模型的影响。通过分析发现:基于DFT的自定义描述符的引入能够明显提高模型的相关性和稳定性;基于一价Cr的活性中心模型更适合关联乙烯三聚选择性,二价Cr的活性中心模型更适合关联乙烯四聚选择性;PNP。Cr骨架几何结构尤其是较小的PNP角度是获得较高1-己烯和1-辛烯选择性的关键。最后,根据最佳线性回归模型对新型PNP配体进行了预测,发现了9种新的PNP配体结构可能具有更高的1-辛烯或1-己烯/1-辛烯共选择性,为进一步的实验开发奠定了良好的理论基础。
1-Hexene and 1-octene are important comonomers for the synthesis of high performance polyolefins. Recently, Cr-bis(diphenylphosphino)amine (PNP-Cr) catalysts show the potential as excellent candidates for highly selective ethylene trimerization/tetramerization. In this work, a series of substituting PNP-Cr catalysts were studied by two-dimensional quantitative structure-property relationship (QSPR) method based on density functional theory (DFT) calculations. The heuristic method (HM) and best multi-linear regression (BMLR) were used for establishing the best linear regression models to describe the relationship between catalyst selectivity and its structure. Both Cr( I ) and Cr( II ) active site models for ethylene trimerization/tetramerization were considered. It was found that using self-defined descriptors from DFT calculations could increase the relativity and stability of the models. Monovalent Cr( I ) center was the most plausible active site for ethylene trimerization, while ethylene tetramerization was most possibly proceeded over divalent Cr(II) active site. The skeleton structures of the PNP-Cr system especially a small PNP angle were crucial for achieving excellent catalytic selectivity. Nine new PNP ligands with high selectivity towards ethylene trimerization/tetramerization were predicted based on the best linear regression models providing a good basis for further development of novel catalyst systems with better performance.