同步辐射作为一种新型红外光源,具有光谱宽、亮度高、分辨率高的特性,在生命科学领域具有广泛的应用。随着同步红外显微镜成像技术的不断发展,同步辐射红外光谱技术可以在原位探测亚细胞级别的生物化学变化,并保留细胞的生命特征。通过对蛋白质、核酸、磷脂等成分的定性和定量分析,可以了解骨细胞、神经细胞的病变,癌变细胞的活动情况以及植物细胞的营养状况等。同时,同步辐射红外光谱技术的应用范围正在不断扩展,其在药物释放的检测和生物化学过程的监控等方面也具有相当好的应用前景。此外,在生物分子的分子间振动能级所处的远红外区,同步辐射红外光谱相比于常规红外光谱具有较高的信噪比。
Synchrotron infrared light source, characterized with broadband, high brightness and resolution is widely used in biomedical fields. With the progress in imaging technique of FTIR microscopy, the scientists can detect biochemical changes in vivo with synchrotron FTIR in subcellular scale and preserve the cells in life feature. By analyzing the protein, nucleic acid and phospholipid components in animal, botanic tissues and cells qualitatively and quantitatively, the pathological changes of bone, the neurodegeneration, the progress of cancer cells and the nutrition in plants can be well understood. Furthermore, the controlled release of drugs and other biochemical processes can also be monitored by synchrotron FTIR. It is worth noting that the intermolecular vibrations of biomolecular assemblies lie in the long wavelength, the so-called far infrared region, where synchrotron FTIR can provide higher signal-to-noise ratio spectra compared with conventional FFIR with global light source.