碳环核苷是呋喃糖环部分被碳环基团取代的核苷类似物。作为天然核苷的类似物,许多碳环核苷具有良好的抗病毒、抗肿瘤活性。同时,由于不存在典型的糖苷键,碳环核苷较天然核苷对于磷酸化酶和水解酶具有更高的代谢稳定性。因此,对碳环核苷类似物进行设计与合成,并筛选出安全有效的抗病毒试剂成为近年来药物化学家们研究的重点。按照碱基种类的不同综述了近5年来碳环核苷的合成研究进展,分为嘌呤类碳环核苷、嘧啶类碳环核苷以及碳环C-核苷等三部分,重点介绍了嘌呤类碳环核苷的合成研究,并对碳环核苷未来的研究趋势进行了展望。
Carbocyclic nucleosides are nucleoside analogues whose furanose rings are substituted by carbocycles. As ana-logues, many carbocyclic nucleosides show good antiviral or antitumor activities. Also, due to the absence of a typical glyco-sidic bond, carbocyclic nucleosides usually exhibit more metabolic stabilities to phosphorylases and hydrolases than natural nucleosides. Therefore, medicinal chemists have focused their attention on designing and preparing new carbocyclic nucleo-side analogues, in efforts to discover new more powerful and safe antiviral agents. The syntheses of carbocyclic nucleosides in the past five years classified by different types of bases are reviewed in this article, denoted as purine carbocyclic nucleosides, pyrimidine carbocyclic nucleosides and carbocyclic analogues of C-nucleosides, with an emphasis on the synthesis of purine carbocyclic nucleosides. In the end, the problems and future trends of carbocyclic nucleoside research are discussed. It is still a challenge to intelligently design and efficiently synthesize the novel carbocyclic nucleosides targeted for some special pur-poses.