在 microbubble 和有弹性的 microvessel 墙之间的相互作用被假设了在治疗学的超声应用程序的机制重要。在这研究, 2D axisymmetric 有限元素数字模型被建立在低频率超声地使用学习在有弹性的 microvessel 墙和震荡的 microbubble 之间的相互作用液体固体相互作用方法。数字结果证明水泡摆动导致容器墙膨胀和消沉。von 协定强调在 microvessel 墙上的分发是异构的,内部容器墙上的中点的最大的价值能分别地在 PNP 0.2 MPa 和 0.5 MPa 下面到达 0.23 MPa 和 1.32 MPa。当水泡崩溃时,环绕的压力很快减少, transmural 压力戏剧性地增加。显著地,环绕的压力与最大的大小变得压缩在 PNP 0.5 MPa 下面的 1.83 MPa,比最大的紧张价值大。快速的压缩在水泡期间强调倒塌在 microvessel 墙 endothelial 衬里混乱上在机械效果起重要作用,是可能的。
The interaction between microbubble and elastic microvessel wall has been hypothesized to be important in the mechanisms of therapeutic ultrasound applications. In this study, a 2D axisymmetric finite element numerical model is established to study the interaction between elastic microvessel wall and oscillating microbubble in low frequency ultrasound field using fluid solid interaction method. The numerical results show that the bubble oscillation induces the vessel wall dilation and depression. The von Mises stress distribution over the microvessel wall is heterogeneous and the maximum value of the midpoint on the inner vessel wall could reach 0.23 MPa and 1.32 MPa under PNP 0.2 MPa and 0.5 MPa, respectively. When the bubble collapses, the circumferential stress decreases rapidly and the transmural pressure increases dramatically. Noticeably, the circumferential stress becomes compressive with the maximum magnitude 1.83 MPa under PNP 0.5 MPa, larger than the maximum tension value. It is possible that the rapid compression stress during bubble collapse plays important role in mechanical effect on microvessel wall endothelial lining disruption. microbubble, elastic microvessel, finite element method, ultrasound