主要研究了高阶色散方程ut+δ2j+1xu=δj+1x(u2)+δj-1x(ux2),j≥2,j∈N,x,t∈R的柯西问题.使用修正傅里叶限制范数方法和Strichartz估计以及修正Bourgain空间,证明了这个问题在修正的Sobolev空间H(s,1/2j)(s〉-j/2+3/4)上是局部适定的.使用迭代技巧,
In this paper,we consider the Cauchy problem for the higher-order dispersive equation ut+δ2j+1xu=δj+1x(u2)+δj-1x(u2x),j≥2,j∈N,x,t∈R.By using the modified Fourier restriction norm method and Strichartz estimate and the modified Bourgain space,we prove that the problem is locally well-posed in modified Sobolev space H(s,1/2j) with s〉-j/2+3/4.By using the iteration technique,we also prove that the flow map is not C2 at the origin if we assume that the problem is well-posed in H(s,w)with 0〈w〈12jfor any s∈R.