对一般Ginzburg-Landau方程提出一个非线性差分格式。在先验估计的基础上,证明此格式依L∞范数收敛,收敛阶为O(h^2+τ^2)。最后数值结果验证了结论的正确性。
In this paper,the numercal solution of the pericdic boundray- initial value problem of generalized Ginzburg- Laudau equation is considered. A new nonlincear finite difference scheme is proposed. The discrete L∞norm error esytimateshow that convergence rate of the present scheme is of order O( h2+ τ2). Numerical examples are given to support the theoretical analysis.