最近的实验表明有高度的不平常的强壮的旋转效果在双 stranded DNA 旋转电子的选择传播。我们建议强壮的旋转效果能以 chiral 结构,联合的纺纱轨道,和特别纺纱依赖者安德森本地化的联合被理解的新机制。DNA 联合的结构和纺纱轨道导致弱费密精力在二个旋转极化状态之间切开的 chiral 的存在。在通用 DNA 分子的内在的安德森本地化可以导致旋转的显著改进选择运输。特别地,有切开的精力的这二个旋转状态有不同本地化长度。起来 / 下面隧道的纺纱可以有短 / 长的本地化长度以便相对起来 / 下面电子的少些 / 更纺纱可以通过系统掘。另外,旋转选择的强壮的长度依赖在实验观察到罐头自然地被理解。安德森本地化提高了选择效果可以提供在分子的 spintronics 和生物系统的纺纱选择的过程的更深的理解的纺纱。
Recent experiments revealed the unusual strong spin effects with high spin selective transmission of electrons in double-stranded DNA. We propose a new mechanism that the strong spin effects could be understood in terms of the combination of the ehiral structure, spin-orbit coupling, and especially spin-dependent Anderson localization. The presence of chiral structure and spin-orbit coupling of DNA induce weak Fermi energy splitting between two spin polarization states. The intrinsic Anderson localization in generic DNA molecules may result in remarkable enhancement of the spin selective transport. In particular, these two spin states with energy splitting have different localization lengths. Spin up/down channel may have shorter/longer localization length so that relatively less/more spin up/down electrons may tunnel through the system. In addition, the strong length dependence of spin selectivity observed in experiments can be naturally understood. Anderson localization enhanced spin selectivity effect may provide a deeper understanding of spin-selective processes in molecular spintronics and biological systems.