位置:成果数据库 > 期刊 > 期刊详情页
基于Java3D的虚拟飞机脑机交互应用系统设计
  • ISSN号:1002-3208
  • 期刊名称:《北京生物医学工程》
  • 时间:0
  • 分类:R318.04[医药卫生—生物医学工程;医药卫生—基础医学]
  • 作者机构:[1]上海大学机电工程与自动化学院自动化系,上海200072, [2]上海市电站自动化技术重点实验室,上海200072
  • 相关基金:国家自然科学基金(60975079,31100709)、上海市教育委员会创新项目(11YZ19,12ZZ099)资助
中文摘要:

目的:针对脑机接口中三类运动想象任务,提出一种最小二乘法自适应滤波结合独立成分分析以及样本熵( RLS-ICA-SampEn )、多类共同空间模式( CSP )、增量式支持向量机( ISVM )相结合的脑电识别新方法,以解决脑机接口中多类运动想象正确率低的问题。方法首先采用ICA将EEG分离,然后利用样本熵自动识别分离后的噪声,再采用RLS对识别出来的噪声进行滤波,最后进行信号重构,得到去除噪声的脑电信号。多类CSP采用“一对一”CSP与多频段滤波相结合,对去噪后的脑电信号进行特征提取。通过“一对多”方式的ISVM对三类运动想象脑电信号获取的特征向量进行分类。为检验新方法的有效性,将本文方法与多类CSP+ISVM(方法1)及RLS-ICA+多类CSP+ISVM(方法2)进行比较。结果对三类想象任务而言,本文方法识别正确率与方法1和2相比均高8%左右。结论与方法1和2比较,RLS-ICA-SampEn、多类CSP、ISVM相结合的脑电识别新方法能更好地适用于多类运动想象任务识别。

英文摘要:

Objective For multi-class motor imagery tasks in brain computer interface ( BCI ) , this paper presents a novel recognition method of electroencephalography ( EEG) by combining RLS-ICA-SampEn [ RLS ( recursive least-squares ) , ICA ( independent component analysis ) , SampEn ( sample entropy ) ] , multi-class CSP (common spatial patterns) and ISVM (incremental support vector machine ).Methods In the RLS-ICA-SampEn, Firstly, the ICA is used to decompose the contaminated EEG signals into independent components (IC).Then, the sample entropy is used to automatically identify the noise signal in the IC .Next, the RLS adaptive filters are applied to the identified noise in IC to remove noise further .Finally, the processed ICs are then projected back to reconstruct the noise-free EEG signals.The RLS-ICA-SampEn is used to preprocess EEG signals to get pure EEG signals , in which some noise signals can be removed .The multi-class CSP combines the CSP and the multi-band filtering technology , in which the CSP uses the ‘one versus one ’ strategy.The multi-class CSP is used to extract featuresfor pure EEG signals.The obtained features are input tothe ISVM for classification.The ‘one versus rest’ strategyis applied to classify three-class EEG signals.In order toverify the effectiveness of the proposed novel method , it iscompared with other two methods including multi CSP +ISVM(method 1), RLS-ICA +multi CSP +ISVM(method 2).Results The result shows that the recognitionaccuracy obtained by the proposed method is higher about 8% than other two methods.Conclusions Comparedwith method 1 and 2, the proposed method is better suited for the recognition of multi -class motor imagery tasksin BCI.

同期刊论文项目
期刊论文 27 会议论文 4 专利 2
同项目期刊论文
期刊信息
  • 《北京生物医学工程》
  • 中国科技核心期刊
  • 主管单位:北京市卫生和计划生育委员会
  • 主办单位:北京市生物医学工程学会 北京市心肺血管疾病研究所
  • 主编:孙衍庆
  • 地址:北京安定门外安贞医院北京生物医学工程编辑部
  • 邮编:100029
  • 邮箱:LLBL910219@126.com
  • 电话:010-64456508
  • 国际标准刊号:ISSN:1002-3208
  • 国内统一刊号:ISSN:11-2261/R
  • 邮发代号:82-885
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:5449