设M^n是de Sitter空间Sp^n+p(c)中具有常数量曲率R(≤c)的完备类空子流形.得到了M^n关于其第二基本形式模长平方||h||^2的间隙性定理:如果n(c-R)≤||h||^2≤2√n-1c,那么,或者||h||^2=n(c-R)且M^n是全脐点子流形,或者||h||^2=2√n-1c且M^n是全脐的或是双曲柱面S^n-1(c-tanh^2r)×H^1(c-coth^2r).
Let M^n be a complete space-like submanifold with constant scalar curvature R (≤c) in a de Sitter space Sp^n+p(c), h be the second fundamental form of M^n in sp^n+p(c). This paper obtains a gap property of the squared norm ||h||^2: if n(c-R) ≤||h||^2 ≤ 2√n-1c, then either ||h||^2 = n(c - R) and Mn is totally umbilical, or ||h||^2 = 2√n- 1c and M^n is totally umbilical or a hyperbolic cylinder S^n- 1 (c - tanh^2 r) × H^1(c - coth^2 r).