位置:成果数据库 > 期刊 > 期刊详情页
对流占优扩散问题的特征AGE方法
  • ISSN号:1000-081X
  • 期刊名称:高等学校计算数学学报
  • 时间:0
  • 页码:347-357
  • 分类:O242.21[理学—计算数学;理学—数学] O351.3[理学—流体力学;理学—力学]
  • 作者机构:[1]College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, P. R. China, [2]Center for Computational Geoscienes, School of Mathematics and Statistics,Xi'an Jiaotong University, Xi'an 710049, P. R. China
  • 相关基金:Project supported by the National Natural Science Foundation of China (Nos. 10901131, 10971166, and 10961024), the National High Technology Research and Development Program of China (No. 2009AA01A135), and the Natural Science Foundation of Xinjiang Uygur Autonomous Region (No. 2010211B04)
  • 相关项目:不可压粘性流动问题的分数步长方法研究
中文摘要:

A two-level stabilized finite element method for the Stokes eigenvalue problem based on the local Gauss integration is considered.This method involves solving a Stokes eigenvalue problem on a coarse mesh with mesh size H and a Stokes problem on a fine mesh with mesh size h = O(H 2),which can still maintain the asymptotically optimal accuracy.It provides an approximate solution with the convergence rate of the same order as the usual stabilized finite element solution,which involves solving a Stokes eigenvalue problem on a fine mesh with mesh size h.Hence,the two-level stabilized finite element method can save a large amount of computational time.Moreover,numerical tests confirm the theoretical results of the present method.更多还原

英文摘要:

A two-level stabilized finite element method for the Stokes eigenvalue problem based on the local Gauss integration is considered. This method involves solving a Stokes eigenvalue problem on a coarse mesh with mesh size H and a Stokes problem on a fine mesh with mesh size h -- O(H2), which can still maintain the asymptotically optimal accuracy. It provides an approximate solution with the convergence rate of the same order as the usual stabilized finite element solution, which involves solving a Stokes eigenvalue problem on a fine mesh with mesh size h. Hence, the two-level stabilized finite element method can save a large amount of computational time. Moreover, numerical tests confirm the theoretical results of the present method.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《高等学校计算数学学报》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:南京大学
  • 主编:何炳生
  • 地址:南京汉口路22号大学数学系
  • 邮编:210093
  • 邮箱:math@nju.edu.cn
  • 电话:025-83593396
  • 国际标准刊号:ISSN:1000-081X
  • 国内统一刊号:ISSN:32-1170/O1
  • 邮发代号:28-17
  • 获奖情况:
  • 国家教委优秀期刊二等奖,江苏省优秀期刊奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:2642