位置:成果数据库 > 期刊 > 期刊详情页
采用shell命令和隐Markov模型进行网络用户行为异常检测
  • ISSN号:0255-8297
  • 期刊名称:《应用科学学报》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京交通大学计算技术研究所,北京100029, [2]中国科学院计算技术研究所,北京100080
  • 相关基金:国家“973”重点基础研究发展计划(No.2004CB318109);国家“863”高技术研究发展计划(No.2006AA01Z452);国家242信息安全计划(No.2005C39)资助项目
中文摘要:

异常检测是目前网络入侵检测领域研究的热点内容.提出一种基于shell命令和隐Markov模型(HMM)的网络用户行为异常检测方法,该方法利用shell会话中用户执行的shell命令作为原始审计数据,采用特殊的HMM在用户界面层建立网络合法用户的正常行为轮廓.HMM的训练中采用了运算量较小的序列匹配方法,与传统的Baum—Welch训练算法相比,训练时间有较大幅度的降低.在检测阶段,基于状态序列出现概率对被监测用户当前行为的异常程度进行分析,并考虑到审计数据和用户行为的特点,采用了较为特殊的判决准则.同现有的基于HMM和基于实例学习的检测方法相比,文中提出的方法兼顾了计算成本和检测准确度,特别适用于在线检测.该方法已应用于实际入侵检测系统,并表现出良好的检测性能.

英文摘要:

Anomaly detection is an active research topic in network intrusion detection. This paper presents a novel method for detecting anomalous user behavior based on shell commands and hidden Markov models (HMM). The method constructs a specific HMM to represent the normal behavior profile of a network user, and associates classes of user behavior patterns with states of the HMM. The HMM parameters are calculated with a sequence matching algorithm which is much simpler than the classical Baum-Weleh algorithm. This reduces computational complexity to a great extent. At the detection stage, a decision rule based on probabilities of short state sequences is adopted, and more than one threshold are used to classify the user behavior. Performance of the method is tested in computer simulation, showing high detection accuracy and efficiency.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《应用科学学报》
  • 中国科技核心期刊
  • 主管单位:上海市教育委员会
  • 主办单位:上海大学 中国科学院上海技术物理研究所
  • 主编:王延云
  • 地址:上海市上大路99号123信箱
  • 邮编:200444
  • 邮箱:yykxxb@departmenl.shu.edu.cn
  • 电话:021-66131736
  • 国际标准刊号:ISSN:0255-8297
  • 国内统一刊号:ISSN:31-1404/N
  • 邮发代号:4-821
  • 获奖情况:
  • 首届中国高校优秀科技期刊,第2届中国高校优秀科技期刊奖,全国高校优秀科技期刊,中国科技期刊方阵双效期刊,上海市优秀科技期刊,首届《CAJ-CD》执行优秀期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:4747