位置:成果数据库 > 期刊 > 期刊详情页
一种用于雷达HRRP功率谱的加权特征压缩方法
  • ISSN号:1001-2400
  • 期刊名称:《西安电子科技大学学报》
  • 时间:0
  • 分类:TN911.7[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]西安电子科技大学雷达信号处理重点实验室,陕西西安710071
  • 相关基金:国家部委“十五”预研计划项目(413070501);国家自然科学基金基金资助项目(60302009)
中文摘要:

针对雷达高分辨距离像的平移不变特征——功率谱特征,提出了一种基于Fisher判决率的加权特征压缩方法.该方法利用目标功率谱特征的Fisher判决率迭代搜索最优权向量,并根据最优权值的大小对特征向量降维.与直接使用原始功率谱特征及基于Fisher可分性判据的几种现有的特征压缩方法相比,加权特征压缩方法在降维的同时可提高识别性能,且运算简单,在基于外场实测数据的识别实验中对测试数据具有良好的稳健性。

英文摘要:

This paper proposes a weighted feature reduction method based on Fisher' discfiminant ratio(FDR) for a time-shift invariant feature, power spectrum, in radar automatic target recognition using the high-resolution range profile (HRRP). The proposed weighted feature reduction method uses the FDR vector of the target power spectrum to iteratively search for an optimal weight vector, and reduce feature dimensionality according to the optimal vector. Compared with using the raw power spectrum feature and some existing reduction methods based on Fisher's linear discriminant, the proposed weighted weight feature feature reduction method can not only reduce the feature dimensionality, but also improve the recognition performance with low computation complexity. In the recognition experiments based on measured data, the proposed method is robust to different test data and achieves good recognition results.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《西安电子科技大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:西安电子科技大学
  • 主编:廖桂生
  • 地址:西安市太白南路2号349信箱
  • 邮编:710073
  • 邮箱:xuebao@mail.xidian.edu.cn
  • 电话:029-88202853
  • 国际标准刊号:ISSN:1001-2400
  • 国内统一刊号:ISSN:61-1076/TN
  • 邮发代号:
  • 获奖情况:
  • 曾13次荣获省部级优秀期刊荣誉和优秀编辑质量奖,2006年荣获首届中国高校优秀科技期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12591