大气压介质阻挡放电等离子体流动控制是通过介质阻挡放电产生形成等离子体风来影响和控制周围空气流动的一种技术手段,对于提升飞行器的气动性能具有重要意义。其在飞行器减阻增升、发动机扩稳增效等方面具有广阔应用前景,目前已经成为国内外空气动力学领域新兴的研究热点。本文对大气压下空气介质阻挡放电产生的沿面低温等离子体气流加速现象进行了研究,针对不同参数(介质材料、介质厚度、电极种类、放电电压)分析放电过程中等离子体的演化,测量等离子体风速及表面电势。结果表明采用介质厚度为1 mm的云母介质,上电极选择不锈钢刀片形状的电极,放电电压峰峰值为16 k V时,表面介质放电等离子体的气流加速效果更好。该研究可为今后等离子体气流控制方面的研究提供一定的实验参考。
Here, we addressedthe airflow control via surface dielectric discharge(SDBD) plasma at atmospheric pressure. The influence of the generation conditions of SDBD non-thermal plasma, including but not limited to the materials of dielectric and electrode, dielectric thickness, electrode's structure and discharge voltage, on the plasma evolution, airflow velocity, and surface potential was experimentally investigated. The preliminary results show that the SDBD plasma generation conditions all have a major impact on the airflow control. To be specific, the asymmetric, parallel filamentary discharge occurs mainly in the negative cycle of voltage and becomes stronger with a sharp-edged electrode; a thicker dielectric has stronger mechanical strength, higher stability, and heightens plasma wind because it can stands safely a high voltage. A bigger dielectric constant and an allowable higher discharge voltage produce stronger plasma wind. The optimized conditions, including a 1.0 mm thick mica, an electrode of sharp stainless steel blade, and a discharge voltage of 16 kV, significandy enhance the plasma wind.