研究子空间格代数Alg ■上的局部Lie导子,其中■是Banach空间X上子空间格且(0)+=∧{M∈:M■(0)}≠(0).利用子空间格代数Alg ■上Lie导子的已有结构,证明了如果δ:Alg ■→B(X)是局部Lie导子,则存在两线性映射T:X~*→X~*,S:()++→X~(**),使得对任意x∈(0)_+,f∈X~*有Sx(f)=-xT(f),其中()_+是(0)_+在X~(**)中的典型映射像.
The local Lie derivations on Alga are discussed, where is a subspace lattice on a Banach space X and (0)+ = ∧ {M∈: M (0)} ≠ (0). By the structures of Lie derivations on Alg , it is showed that there are linear maps T: X^* →X^* , S: (O^^)+→X^** such that Sx^^(f) =-x^^T(f) for all x∈ (0) + and f∈ X^* if δ: Alg →B(X) is a local Lie derivation, where (0^^)4 is set of cahonical map images from (0)+ into X^**