The oscillation property(OP) is a fundamental and important qualitative property for the vibrations of single span one-dimensional continuums such as strings,bars, torsion bars, and Euler beams. Any properly discretized continuum model should keep the OP. In literatures, the OP of discrete beam models is discussed essentially by means of matrix factorization. The discussion is model-specific and boundary-conditionspecific. Besides, matrix factorization is difficult in handling finite element(FE) models of beams. In this paper, according to a sufficient condition for the OP, a new approach to discuss the property is proposed. The local criteria on discrete displacements rather than global matrix factorizations are given to verify the OP. Based on the proposed approach, known results such as the OP for the 2-node FE beams via the HeilingerReissener principle(HR-FE beams) as well as the 5-point finite difference(FD) beams are verified. New results on the OP for the 2-node PE-FE beams and the FE Timoshenko beams with small slenderness are given. Through a simple manipulation, the qualitative property of discrete multibearing beams can also be discussed by the proposed approach.
The oscillation property (OP) is a fundamental and important qualitative property for the vibrations of single span one-dimensional continuums such as strings, bars, torsion bars, and Euler beams. Any properly discretized continuum model should keep the OP. In literatures, the OP of discrete beam models is discussed essentially by means of matrix factorization. The discussion is model-specific and boundary-condition- specific. Besides, matrix factorization is difficult in handling finite element (FE) models of beams. In this paper, according to a sufficient condition for the OP, a new approach to discuss the property is proposed. The local criteria on discrete displacements rather than global matrix factorizations are given to verify the OP. Based on the proposed approach, known results such as the OP for the 2-node FE beams via the Heilinger- Reissener principle (HR-FE beams) as well as the 5-point finite difference (FD) beams are verified. New results on the OP for the 2-node PE-FE beams and the FE Timoshenko beams with small slenderness are given. Through a simple manipulation, the qualitative property of discrete multibearing beams can also be discussed by the proposed approach.