位置:成果数据库 > 期刊 > 期刊详情页
基于HMM-SVM的驾驶员换道意图辨识研究
  • ISSN号:1000-7105
  • 期刊名称:电子测量与仪器学报
  • 时间:0
  • 页码:-
  • 分类:TN709[电子电信—电路与系统]
  • 作者机构:汽车车身先进设计制造国家重点实验室,长沙410082
  • 相关基金:国家自然科学基金(51175159);国家自然科学基金(51575169); 中华人民共和国人力资源和社会保障部留学人员科技活动项目资助
  • 相关项目:基于道路智能空间的车辆主动避障局部路径规划研究
中文摘要:

为了提高驾驶员换道意图的辨识率,提出了一种基于隐马尔可夫模型(HMM)和支持向量机(SVM)的混合模型。通过驾驶员在环仿真实验平台采集1.2 s时间窗内的驾驶员方向盘转角、油门踏板操作信息,匹配时序性良好的各个HMM模型(紧急左换道、正常左换道、紧急右换道、正常右换道和车道保持五种HMM模型)。然后结合各个HMM模型输出的最大似然估计值,由SVM进行分类,从而辨识出驾驶员当前的换道意图。仿真结果表明:相比单独的HMM或SVM,该混合模型能够更准确地辨识驾驶员的换道意图,辨识率高达98%,且耗时仅需0.006 s,具有较好的实时性。

英文摘要:

A hybrid model based on hidden Markov model (HMM) and support vector machine (SVM) is proposed to improve the recognition rate of the driver' s lane change intention. The driver' s steering wheel angle and accel- erator pedal data in 1.2 second time window are collected by the Driver-in-Loop (DiL) simulation experiments, these data could be matched with five HMM models (emergency left lane change, normal left lane change, emer- gency right lane change, normal right lane change and lane keep these five HMM models), which possess an out- standing characteristic of time sequence. SVM can classify the maximum likelihood estimation which is outputted by HMM models. Finally, it can recognize the driver' s lane change intention. The simulation results show that this proposed hybrid model can recognize the driver' s lane change intention more accurately when compared with the classified approach only with the HMM or SVM, the recognition rate is reached as high as 98% , and takes only 0. 006 second, which shows that it has an excellent performance in real time.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子测量与仪器学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国电子学会
  • 主编:彭喜元
  • 地址:北京市东城区北河沿大街79号2层
  • 邮编:100009
  • 邮箱:mi1985@emijournal.com
  • 电话:010-64044400
  • 国际标准刊号:ISSN:1000-7105
  • 国内统一刊号:ISSN:11-2488/TN
  • 邮发代号:80-403
  • 获奖情况:
  • 国内外数据库收录:
  • 中国中国科技核心期刊,中国北大核心期刊(2014版)
  • 被引量:14380