位置:成果数据库 > 期刊 > 期刊详情页
基于改进SMOTE的非平衡数据集分类研究
  • ISSN号:1002-8331
  • 期刊名称:计算机工程与应用
  • 时间:2013.1
  • 页码:184-187
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]西安建筑科技大学信息与控制工程学院,西安710055, [2]中国农业科学院植物保护研究所,北京100193
  • 相关基金:基金项日:国家自然科学基金(No.31170393);陕西省教育厅自然科学项目(No.2010JK620).
  • 相关项目:气候变暖温度模式对3种麦蚜种群影响及长期趋势情景模拟
中文摘要:

针对SMOTE(SyntheticMinorityOver—samplingTechnique)在合成少数类新样本时存在的不足,提出了一种改进的SMOTE算法(SSMOTE)。该算法的关键是将支持度概念和轮盘赌选择技术引入到SMOTE中,并充分利用了异类近邻的分布信息,实现了对少数类样本合成质量和数量的精细控制。将SSMOTE与KNN(K—NearestNeighbor)算法结合来处理不平衡数据集的分类问题。通过在UCI数据集上与其他重要文献中的相关算法进行的大量对比实验表明,SSMOTE在新样本的整体合成效果上表现出色,有效提高了KNN在非平衡数据集上的分类性能。

英文摘要:

Based on analyzing the shortages of SMOTE (Synthetic Minority Over-sampling Technique), an improved SMOTE (SSMOTE) is presented. The key of SSMOTE lies on leading the concept of support and roulette wheel selection into SMOTE and making full use of the heterogeneous nearest-neighbor distribution information to achieve the fine control of the synthesis quality and quantity to the minority class samples. SSMOTE and KNN(K-Nearest Neighbor) are combined to handle the classi- fication problem on imbalanced datasets, and extensive experiments are conducted to compare SSMOTE and algorithms in perti- nent literatures on the UCI datasets. The simulation results show SSMOTE promises prominent synthesis effect to the minority class samples, and brings better classification performance on imbalanced datasets with KNN.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887