位置:成果数据库 > 期刊 > 期刊详情页
基于关联挖掘和语义聚类的Deep Web复杂匹配方法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]江苏大学计算机学院,江苏镇江212013
  • 相关基金:国家自然科学基金资助项目(60773049)
中文摘要:

为了提高DeepW eb查询接口匹配的效率和准确率,在现有双重相关性挖掘方法(DCM)的基础上提出了一种用关联挖掘和语义聚类来匹配的方法。在关联挖掘成组属性时,引入一种基于互信息的属性相关度标准,并采用矩阵来实现以解决效率不高问题;在生成同义属性时,提出利用语义网来计算语义相似度,并对属性进行聚类,以生成同义属性。通过在四个领域200多个查询接口上实验,说明改进的方法在效率和准确率方面都比DCM方法有很大提高。

英文摘要:

In order to improve the efficiency and accuracy of Deep Web interface matching, this paper presented a method based on the existing dual correlation mining (DCM) method using association mining and semantic clustering. While digging group attributed by using correlation algorithm, introduced and realized a new correlation measure based on mutual information by matrix to resolve the inefficiency problem. Clustered the attributes to synonymous attributes by their similarity which was computed by using semantic net. By the comparison on more than 200 interfaces in 4 domains, the experiment results indicate that the improved method has greatly heighted than DCM in the respect of efficiency and accuracy.

同期刊论文项目
期刊论文 73 会议论文 12 专利 2
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049