位置:成果数据库 > 期刊 > 期刊详情页
传感器网络中健壮数据聚集算法
  • ISSN号:1000-9825
  • 期刊名称:软件学报
  • 时间:0
  • 页码:2415-2419
  • 语言:中文
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国人民大学信息学院,北京100872, [2]中国人民大学数据工程与知识工程教育部重点实验室,北京100872, [3]襄樊学院计算机科学与技术系,湖北襄樊441053, [4]武汉大学软件工程国家重点实验室,湖北武汉430072
  • 相关基金:Supported by the National Natural Science Foundation of China under Grant Nos.60603046, 60673138; the National High-Tech Research and Development Plan of China under Grant No.2008AA01Z120; the Program for New Century Excellent Talents in University of China
  • 相关项目:无线传感器网络查询处理新技术研究
中文摘要:

节约能量以提高网络寿命是传感器网络研究面临的重要挑战网内聚集查询在中间节点对数据进行预处理,可以减少消息传送的数量或者大小,从而实现能量的有效利用,但是,目前的聚集查询研究假设采样数据都是正确的.而目前的异常检测算法以检测率作为首要目标,不考虑能量的消耗,也不考虑查询的特点.所以将两方面的研究成果简单地结合在一起并不能产生很好的效果.分析了错误和异常数据可能对聚集结果造成的影响,提出了健壮聚集算法RAA(robust aggregation algorithm).RAA对传统聚集查询进行了改进,在聚集的同时利用读向量相似性判断数据是否发生了错误或异常,删除错误数据,聚集正常数据并报告异常,使用户可以对网络目前状况有清晰的理解.最后,比较了RAA和TAG Voting(在使用TAG(tiny aggregation)算法聚集的同时利用Voting算法进行异常检测),实验结果表明,RAA算法在能量消耗和异常检测率方面都优于TAG Voting.

英文摘要:

Saving energy to prolong network life is a big challenge for WSNs (wireless sensor networks) research. In-Network query can reduce the number or size of packets through processing data in intermediate nodes so as to consume energy effectively. Present aggregation algorithms suppose all the sample data are correct. The existing outlier detection algorithms regard detection rate as the primary object and do not consider energy consumption and query characteristic. So the simple combination of the two aspects can not bring good performance. By analyzing the influence of faulty and outlier readings to aggregation results, this paper puts forward a robust aggregation algorithm RAA (robust aggregation algorithm). RAA improves traditional aggregation query using reading vector to judge whether a faulty or outlier has happened. RAA deletes faulty readings, aggregates normal readings and reports outliers. Thus, customers can know the networks condition clearly. Finally, this paper compares RAA and TAGVoting which uses tiny aggregation algorithm to complete aggregation and the Voting algorithm to realize outlier detection at the same time. Experimental results show that RAA outperforms TAGVoting in terms of both energy consumption and detection rate.

同期刊论文项目
期刊论文 27 会议论文 27
同项目期刊论文
期刊信息
  • 《软件学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所 中国计算机学会
  • 主编:赵琛
  • 地址:北京8718信箱中国科学院软件研究所
  • 邮编:100190
  • 邮箱:jos@iscas.ac.cn
  • 电话:010-62562563
  • 国际标准刊号:ISSN:1000-9825
  • 国内统一刊号:ISSN:11-2560/TP
  • 邮发代号:82-367
  • 获奖情况:
  • 2001年入选中国期刊方阵“双百期刊”,2000年荣获中国科学院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54609