提出了一种传感器网络中分布式多分辨率数据压缩算法在分布式域剖分模型DDPM(distributed domain partition model)基础上,提出了一种多分辨率的数据压缩模型MDCM(multiscale data compress model),DDPM把传感器网络按域划分来构建连通核,传感节点只需在连通核中寻径,因而能够明显减少寻径时间复杂度并且具有更好的分布性;MDCM利用Voronoi网格来对DDPM所形成的域中的节点进行划分,然后采用多分辨率方法构建数据压缩模型.理论分析和实验仿真结果表明,MDCM具有很好的逼近性能,并且能够对传感器网络中的数据进行有效压缩,可以更大程度地降低传感器网络中的数据传输量.
This paper proposes a distributed multiscale data compress algorithm which can transform irregular sample data. Considering the characteristics and location information of nodes in sensor networks, a novel distributed domain partition mode DDPM (distributed domain partition model) is proposed first. On the basis of this model, a multiscale data compress model-MDCM (multiscale data compress model) is proposed for sensor networks. MDCM uses Voronoi tessellation partition the domain created by DDPM. Theoretical analyses and simulation results show that the novel methods above have good ability of approximation, and can compress the data efficiently, reduce the amount of data greatly.