位置:成果数据库 > 期刊 > 期刊详情页
综合最大匹配和歧义检测的中文分词粗分方法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中石化管道储运有限公司,江苏徐州221008, [2]中国石油大学北京油气数据挖掘(北京)市重点实验室,北京102249, [3]石大兆信数字身份管理与物联网技术研究院,北京102229
  • 相关基金:国家高新技术研究发展计划(2009AA062802);国家自然科学基金资助项目(60473125);中国石油(CNPC)石油科技中青年创新基金资助项目(05E7013);国家重大专项子课题(G5800-08-ZS-WX)
中文摘要:

为了提高销售预测的准确性,建立了组合销售预测模型。历史销售数据是非线性、时变的时间序列,可看成由线性和非线性2部分组成。用ARMA模型预测线性部分,用BP_AdaBoost模型预测非线性部分,然后将2部分预测结果叠加得到销售预测结果。该组合模型克服了单纯采用ARMA模型预测结果精度低的问题,也克服了单纯使用BP神经网络模型容易陷入局部极小值的问题。经实验对比表明,采用组合预测模型能够更加准确、全面地反应销售规律,提高了销售预测的准确性。

英文摘要:

In order to improve the accuracy of prediction, a combined sales prediction model is established.The historical sales data is nonlinear, time-varying time series.It consists of two parts, the linear and nonlinear.By using the ARMA model, the lin-ear part can be predicted while the nonlinear part can be predicted by using BP_AdaBoost model.Then the two prediction results are added together.The combination model overcomes the problem of low accuracy by using ARMA model alone.What’ s more, it also overcomes the problems that BP neural network model is easy to fall into local minimum.The experiments show that the combination model can improve the accuracy of sales prediction and reflect market rules more accurately and comprehensively.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887